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We investigate the stability of the zero solution of a nonlinear system of differ- 

ential equations with periodic coefficients and holomorphic right-hand sides, 

We examine the critical case when the characteristic equation of the linearized 

system has only complex conjugate roots equal to unity in absolutevalue, while 

specific integer relations (resonance) exist between the characteristic indices 

and the frequency of the ~~rt~~d motion . We formulate the conditions under 

which the stability question is resolved by the first nonlinear forms of the expan- 

sion of the right-hand sides of the equations of perturbed motion. For the most 

important types of resonance we have obtained the necessary and sufficient con- 

ditions for stability with respect to even-order forms. The sufficiency is proved 
by the existence of a sign-definite integral, while the necessity, by the construc- 
tion of a Chetaev function. The results obtained are extended, in particular, to 

the stability of the periodic motions of Hamiltonian systems. Special cases of 

this problem are examined in [I, 31. A general approach to solving this prob- 
lem for non-Hamiltonian systems of second order was developed in [4]. 

1. We consider the system of equations of perturbed motion 

ax, 1 at = x, (x,, t) G.1) 

X*(~*A== A(tb*+ g X*(‘)(“*, t) 
1 =m>,z 

where a+ is a Zn-dimensional vector and X, (x*, t) is an analytic vector-valued 

function, periodic in t with a real period o , of the form indicated. 

Let the matrix A (t) be such that all the roots of the characteristic equation are com- 
plex and equal to unity in absolute value. Then, the problem of the stability [5] of the 

trivial solution of the nonautonomuous system (1.1) reduces to the critical case of the 
stability of n pairs of pure imaginary roots for the autonomous system if between the 
characteristic indices t h, (h,’ < 0, s = 1,. . ., a) and the number ?&i/o there 
exist no integer relations of the form 

(P11) =sp, i ~6-1 p -o.I:i,*z,. . . 0.2) 

p = (PI. * * * 7 PA Iq = PI+ I.. -i_Pn>3, Ps>O 

A = (h*, * . * , ha, b+l, * . - , L) 

h&)0, i=I,. . .,a, h,i<O, s=u+l,. . .,n 

where P is an n-dimensional vector with integer components. 
We investigate the problem of the stability of the trivial solution of system (1. l)when 
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the resonance relations (1.2) are satisfied, Here we consider the case when the stability 
question is resolved by 112 -th-order forms,representing the lowest nonlinear terms in the expan 

sion of the,vector-valued function X&s,, t). As will be clear from what follows, in rhis 
case we must have lp 1 = m -I- 1. We shall examine only even values of m and, in 
addition, assume that vector P, satisfying (1.2), is unique. BY the same token we have 
excluded integer and half-integer values of a, as well as the cases of complex resonance 
when the same frequencies are encountered in different resonance relations. 

Using a linear transformation without violating the stability problem, system (1.1) can 
be written as f5f 

x’= hlr: + i X(~)(~,~,~~, y’ = -hy _t i Y(~~(~,~, t) (1.3) 
kin>2 l=Vl>Z 

z -((-FL * . . ,rc,), Y -= (?A, . . . 3 yn), h = jk, . . . ,h,) 

Here 2, y are complex-conjugate vectors, 3; is a diagonal matrix, X(E) (2, y, t) and 
YQ) (z, y, t) are complex-conjugate vector-valued functions, periodic in t with period 
0, whose components Xs(l) and ?R(l) are representid by 2th-order forms, so that 

X,(l) = 2 &, I, (t)zlks, . . 
lk,l+l~,l=~ ’ 

. xplksnylb, . . . ynbn 

Rk8.,Z#) =~k&(~ + a), S = 1, 2, . . . ,ri 

J% = @,I, - . . f LJ, 4 = (41, * ’ I ) f 3 s1z f k,j, l,j > 0 

I&/ = fisl4 - . * + k,,, psi = 4l4- * ’ * -i- 4, 

where k,, I!, are all possible integer vectors. We transform (1.3) by the replacement 

5, = [u, - 2 U&l,(t) uIk8 . . . u,b vlh . , . u,‘sn] exp (h,t) 0.4) 
m 

Ys = Iv, - z vk,,I, (t) zllkSl . . . z,km&1 * . . u*h] exp ( - A$) 
m 

s-l,&. . .,n 

in which we try to select the complex-conjugate functions uk,, I, (8) and vk8, I, (t) such 
that they are bounded in t, while in the transformed equations the m&-order formshave 
wns~ntc~f~~en~ The first group of equations in the wmplex-conjugate variables 
&and vu, takes the form 

x, = 5 (k,j - l,j) hj - h,, s-1,2,. . .,n 
j=l 

where the unwritten terms have an order of smallness no lower than m -/- 1 . 
we select the functions Uk,,l, (t) from the equations 

&& f Rks,l, tt) *=P txst> = gk,,t, o.f2 

where gk$,f, a certain constants which we determine from the requirement of bound - 

edness of Vk,,r,(t). Expanding Rk,,I, (tf in a J?ourier series, we have 
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To obtain bounded ub8,‘s when X, does not satisfy the condition 
251i 

x, = WP, p=o,&i,*zt,. . . 0.3 

it is obviously necessary to set gk,,t, z 0. The u k,.t, (t) themselves are represented in 
the series form 

U&$(t) = *i 
@) 
% _-oo xI + Znni/w exp[(x, + y) t] t+ Ckb,tS 

which, obviously, converge since the quantity IC, remains unchanged for each pair of vec- 
tors (k,, 1,) . Thus, we can suppress all the nonresonant terms in the m&-order forms. 

Now let (X,7) be satisfied for some p = p*. Then, setting g& 
we obtain 

I = &Z,:), fkom (1,6) 
d’ 8 0 

zj#J* (t) = +; 

@f 
vs 

_m (n + p+) 2nni/o exp I In +P*) 
2nd 
-t 0 I -I- G,,l, 

where IL + p* # 0 and, consequently, in this case all the U,,, rs are periodic with 
period o. Comparing (1.2) and (I. 7) we can be convinced that under the assumptions 
made concerning the vectors P and A the relations (1.2) are satisfied by the unique 
vectors k, and &, namely : 

for s=l,. . .,a: k,j=O, i,j=pj, L,,-Ps- 1, j=It..‘rC1 

k,j = ~$5 jj = 0, j = s( + 1, . . . ,n 

for s=a+l,. . *,n; fs,j = pj, 1,j = 0, j=&...,a 

ksj=O, l,j==pj, l,,=p,--1, j=a-l-i,...,n 

The constant coefficients &,, t, ~~es~nding to the vectors k, and 2, indicated, are 
0 

and since a unique pair of resonance vectors k,, I, exists for each s == 1,. . ., n, in 
the nonsingular case (qk,,r, =#= 0) there is only one nonzero complex coefficient gks, I, 
in each of the equations. 

we reduce the first group of complex-conjugate equations to the form 

where the functions QI>, (u, 8, t) are bounded in the region 
?3 

and are of orders not less than m -+- 2 in us and z,‘~. 
Now setting 
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24, = rs exp (- i%), v, = r,exp (W, s=afl,. . .,?I 

24, = r, exp (ie,), u, = rs exp (- i%), s=l.. .,n 

and adding onto Eqs. (1.8) the unwritten group of equations conjugate to them, we reduce 
the complete system of equations of perturbed motion to the following form, indepen- 
dently of the number a = 1, . . . , n characterizing the resonance vectors P and k 

r,r,’ = OS (0) i rj% + R, (r, Q, t) (1.9) 
j=l 

s::1,. ‘ .,?L 

r,28s- = F$ fiTjY + Os(T, 0, t) 

Here 
j=l 

Q, (0) = a, cos 8 + b, sin 0 

0 =PA + * . . +pnen, f- = (?I + . . . + r,y 

while the functions R, (r, 8, t) and gg(r, 8, t), being %r,-periodic in fj and almost 
periodic in t, are of an order of smallnkss not less than m + 2 relative to r . The sys- 

tem of equations resulting from (1.9) when R, = 0, z 0, is subsequently called the 

model system. 

a. We reduce the investigation of the stability of the trivial solution of system (1.9) 

to three principally different cases 

n=1, (m+I)n+2 (2.1) 

2ni 
n=27 Plhl+Pzh=~P, pl+-pa=mfl 

2aKi 
n=3t Pl~l+Pzb+P&3=~P, pk+p2+p3=m+l 

where p = 0, rt: 1,’ t 2,. - *, while ps > 0 are integers. 

Let us consider the case n = 1, System (1.9) can be reduced to the form 

rr’=Y’~+~r”leos[~-((m+1)8]+ f * . (2.2) 

rse’=~~+~1sin[~-(m+1)8]+ . . . 

The model system has 2(m + 1) singular directions, determined by the equations 

0,=(*+4n)l(m+l), q=i,Z. . .,2(m+l) 

It can be verified that one-half of these directions correspond to unstable particular solu- 

tions (an unstable ray), while the equilibrium position is a singular saddle point. 
Theorem 2.1, The trivial solution of system (2.2) is unstable for a2 + b2 # 0. 
The proof can be carried out with the aid of the Liapunov function 

V = Pflcos [$ - (m + 1) 81 

whose derivative by virtue of (2.2) is 
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j7- = (~3 + 1) vu2 -j- b2r2” + rzmtl @ (r, 8, 6) 
where @ (r, 6, t) is a function Zrc- periodic in 6 and almost periodic in t, conse- 

quently, is bounded in every region I” < h . Obviously, for 

$- ll,at < (m + 1) 8 < 9 + “ia n 

we have IV’ > 0, which satisfies Liapunov instability theorem [6] since v’ is a posi- 

tive-definite function in a whole neighborhood of the origin for a fairly small r. We 

note that a special case of the one being considered was investigated in f I - S] wherein 

only ~amiltonian systems were studied, 
Let us investigate the infiuence of this resonance in a system of arbitrary order, having 

n i_ k pairs of pure ~rnag~na~ characteristic indices, of which the first n pairs do not 
satisfy even one of relations (1.2) where again 1 P 1 = m + 1, while m (even) is the 

degree of the lowest of the nonlinear forms with which the expansions of the right-hand 

sides of the original differential equations start. The remaining k pairs of characteristic 

indices satisfy only resonance relations of the form 

kj.(m+l)==~p, p==O,fi,+2,. . ., j=I,2,. . .,k (2.3) 

Then the original system of equations can be represented as 

Here X, Y and 5, H are complex-conjugate vector-valued functions, periodic in f, 
whose expansions with respect to 2, y, &, ‘1 start with mth-order terms, 

Using the nonlinear transformation (1.4), system (2.4) can be brought to the form 

pyps’ = Y$“,, ps%pS I= B), (2.5) 

rjrj’ = y-,2 + bj2 I^~+~ COS [+j - (no $- ‘I> Qj] + Rj 

rj”Efj’ = l/aj’ + bj2rm+l sin [ qj - (m + 1) @j] + E$ 

r = (Q + . . * + r&y , ~==+t2+ ..- +p,2)““, j==It.._,k,s-.=l,..,,tz 

where the functions \v,%, a),,7 Rj, @j are bounded relative to (pr, . . . , rp,, &, . . ., 0, 
and t, while their expansions with respect to r and p start with terms of order not less 

than m -I- 2 . The following theorem proves to be valid for the system obtained. 
Theorem 2.2. If even one of the inequalities ,$ + b;i + 0, j :== 1,. . ., ,+, 

is fulfilled, the zero solution of system (2.5) and, consequently, (2.4) is unstable. 

The proof can be given with the aid of Kamenkov instability theorem p] in the case 
of n + k zero roots of the characterisitc equation. 

Let X$1sl) and Yi(@ be the m th-order forms with which the expansions of the vector- 

valued functions X and Y of system (2.4) start. We set up the forms 

Fj = sjYj”’ - y$y’zz f/aj” -i_ b$m*’ sin [$ - (nz -+ 1) $1 
jz2,2 I.“, k 

C; == ZjX~“’ -t_ yjY$“’ 3 i/aiL -+ bj2rrn+’ cos [Zl, - (m + 1) 0j] 
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According to Kamenkov theorem the trivial solution of system (2.4) is unstable indepen- 
dently of the terms of higher than mth-order if for even one value ej*, being a root of 

the equation Fj (01) = 0, the form Gj (f3,*) > 0. Suppose that we have a$+ hj2 + 0 
for even one pair a], bj . Then, by setting i$* 11 (m + 1)-1~, we obviously satisfy 
all the hypotheses of Kamenkov theorem. 

The theorem we have proved allows us to draw the following conclusion: the presence 

of even one resonance of form (2.3) in a system leads, as a rule (excepting total degene- 
racy), to the instability of the whole system. In the case m = 2, of practical import- 

ance, when designing the system we should avoid the situation when among the charac- 
teristic indices there is even one which is an integral multiple of one-third of the fre- 

quency of the unperturbed periodic motion, 

We now consider the cases n = 2, n = 3 from (2,l). In both these cases the model 
system resulting from (1.9) by discarding the functions R, and 0, has one and the same 

form as in the case of odd-order integral resonance for autonomous systems, treated in 
fullest generality in @. 93. Therefore, all the conclusions on the stability drawn in these 

papers are preserved here. We cite them without proof. 

Theorem 2.3, Under resonance in the case n = 2 the necessary and sufficient 
condition for the stability of the model system is 

a,1 a2 = b, i b, < 0 

The sufficiency can be proved by the existence of a sign-definite integral @sr~e - 

Vs2 = con&, while the necessity, by Chetaev theorem, where the Chetaev function _ 
we can take in the form 

Y = fPr+.P (cos 8 + 3t sin 0) 

Theorem 2.4. Under resonance in the case n = 3 the necessary and sufficient 

conditions for the stability of the model system are 

BiSg > Oy i, s = 1,2,3 

p1 = a,b, - a3b2, f& = a&, - a,b,, fJ3 = alb, - a,b, 

The sufficiency again can be proved by the sign-definite integral filrla + &g-22 -C_ 

B r a = const ,whiIe the necessity, by the Chetaev function 33 

ii = r1arza7+az fcos 0 j- x sin 0) 

In the three cases of resonance considered a tendency is revealed of a decrease in the ca - 

ses ofinstability with an increase in the number of frequencies participating in the resonance : 
in the case n = 1 stability is possible only under total degeneracy (aa + b2 = 0), 
while for n = 2 one case of stability is possible, and for n = 3 the stability of the 
model system is preserved in the whole region of values of its parameters. 

Dwelling on the question of the connection of the stability problem for the complete 
system with the stability problem for the model system, we note that from the stability 
of the model system it is impossible to draw any conclusions on the stability of the com- 
plete system. while the instability of the model system necessarily implies the instability 
of the complete system. This fact has been rigorously proved ( l ) for autonomous systems, 

*) Nurpeisov, S,, On stability in the critical case of n pairs of pure imaginary roots 
in the presence of internal resonance. Candidate’s Dissertation. Alma-Ata, 1972. 
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As a consequence of the boundedness with respectto time of the forms of higher than 

mth order in (1.8) and of the complete coincidence of the model systems for the auto- 
nomous case and for the case of periodic motions, the results on total instability of the 
autonomous system extend to the resonance case considered here for n = 2 and n = 3. 

3, In conclusion we consider the Hamiltonian systems 

f*+ &*=-S, s=1,2 )‘.., n s 
s s 

where El’* t analytic in 2,*, g,* and o is the Hamiltonian function periodic in time t 

Then under the assumptions made above relative to the roots of the characteristic equa- 

tion, with the aid of a linear ~ansformation, 0 -periodic in t , of the variables x~*, yS* 

to the new x,, yS we again obtain the canonic equations 

._aH . 
xs _ay,’ ys = - ‘2, H = 5 h,x,ys + i H(‘)(x, y, t) 

s S=l km+1 

where 2, and tab are complex-conjugate variables, while H(l) are Ith-order forms in 
x,, yS with periodic coefficients. As we can easily convince ourselves, a car-ionic trans- 

formation of the equations obtained, analogous to (1.4) can be given by means of the 

generating function 

S =i$r [x,u,+ Z 
l~~l+l~ J=m+1 

%,,t,(t)+. . .~~w~~~. . . li>]exp(-&t) 

Consequently, Eqs. (1.8) are again in canonic form if the original equations were canonic. 

If we require Eqs, (1.8) to have the form 

u,’ = dK/dv,, v; = - 8K/du,, s=i,2,...,n 

then under resonance in the case n = 2 we arrive at the condition a,b, - a,b, = 0, 
while for n = 3 , to the condition pS = 0, s = 1, 2, 3. It is interesting that for 
?Z = ‘l, for arbitrary original system, the model system corresponding to it is always ob- 

tained as canonic with the Hamiltonian 

R= ---& [(a + ib) urn+1 + (a - ib) P+l] 

Thusin thecases a=$, n = 2 the stability conditions for the canonic systems follow in 

a special manner from Theorems 2.1 and 2.3, 

The case n = 3 for canonic systems requires a special analysis, For autonomous ca- 
nonic systems this case of resonance was investigated in @] and, next, in [lo] where, in 
particular, it was shown that the instability of the model system necessarily implies the 
instability of the complete system. In this case the following theorem gives the necessary 
and sufficient stability conditions for the model system. 

Theorem 3.1. The necessary and sufficient condition for the stability of the tri- 
vial solution of the model system under resonance in the case n = 3 is the presence of 
an alternation of sign in the sequence of numbers a,, us, a3 or b,, b,, b,. 

The sufficiency can be’ proved by the sign-definite integral 

W-l2 + a,rz2 + cz3r23 = con&, aj > 0, j-1, 2, 3 

while the necessity, by the Chetaev function 
V = rp17fYp eos 0 
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We prove that from the stabiiity(asymptotic stability) of linear system (1) follows 
the stability (respectively, asymptotic stability) of the trivial solution of nonlinear 
system (2) if the deviations of the arguments and the nonlinear addition are 

sufficiently small in the correspinding integral sense, 

For I = 1,2,. . . , q we denote f (t, EL, ql) =f (t, E1, h,. . ., &,q~,%~. . * 
qp), where f, &, tll are m-dimensional vectors. We consider the following two systems: 

the linear system (1) and the nonlinear system (2) perturbed [ 11 relative to (1) 

P 

Here fph, +r , ~1 are tra~formatio~ of the argument, A k (f) are square matrices, 
x and I# are m th-order vectors. Everywhere the integrals are to be understood in the 
Lebesgue sense, The derivative is to be understood in the following sense. If for some 


